과거 판매 데이터를 기반으로 향후 판매량을 예측하는 경진대회를 공략합니다. 탐색적 데이터 분석은 간단하게만 다룹니다. 대신 많은 시간을 피처 엔지니어링에 할애해서 성능 향상을 위한 파생 피처를 만들어봅니다. 이 과정에서 다양한 피처 엔지니어링 기법을 배울 수 있습니다.
Read More[캐글 첫걸음] Must Have 《머신러닝·딥러닝 문제해결 전략》(세종도서 선정작)
이 문서는 Must Have 《머신러닝·딥러닝 문제해결 전략》(세종도서 선정작) 의 2장. '캐글 정복 첫걸음'입니다. 학습… Read More
[머신러닝 경진대회] 향후 판매량 예측 ❷ – 베이스라인 모델
과거 판매 데이터를 기반으로 향후 판매량을 예측하는 경진대회를 공략합니다. 탐색적 데이터 분석은 간단하게만 다룹니다. 대신 많은 시간을 피처 엔지니어링에 할애해서 성능 향상을 위한 파생 피처를 만들어봅니다. 이 과정에서 다양한 피처 엔지니어링 기법을 배울 수 있습니다.
Read More[머신러닝 경진대회] 향후 판매량 예측 ❶ – 경진대회 이해와 탐색적 데이터 분석
과거 판매 데이터를 기반으로 향후 판매량을 예측하는 경진대회를 공략합니다. 탐색적 데이터 분석은 간단하게만 다룹니다. 대신 많은 시간을 피처 엔지니어링에 할애해서 성능 향상을 위한 파생 피처를 만들어봅니다. 이 과정에서 다양한 피처 엔지니어링 기법을 배울 수 있습니다.
Read More다시 살펴보는 머신러닝 주요 개념 4편 – 하이퍼파라미터 최적화
경진대회를 푸는 데 필요한 주요 머신러닝 개념들을 요약·정리했습니다. 문제를 풀다가 언뜻 떠오르지 않는 개념이 있을 때 참고해주세요. 총 4편으로 준비했습니다.
Read More다시 살펴보는 머신러닝 주요 개념 3편 – 주요 머신러닝 모델
경진대회를 푸는 데 필요한 주요 머신러닝 개념들을 요약·정리했습니다. 문제를 풀다가 언뜻 떠오르지 않는 개념이 있을 때 참고해주세요. 총 4편으로 준비했습니다.
Read More다시 살펴보는 머신러닝 주요 개념 2편 – 데이터 인코딩, 피처 스케일링, 교차 검증
경진대회를 푸는 데 필요한 주요 머신러닝 개념들을 요약·정리했습니다. 문제를 풀다가 언뜻 떠오르지 않는 개념이 있을 때 참고해주세요. 총 4편으로 준비했습니다.
Read More다시 살펴보는 머신러닝 주요 개념 1편 – 분류와 회귀/분류 평가지표
경진대회를 푸는 데 필요한 주요 머신러닝 개념들을 요약·정리했습니다. 문제를 풀다가 언뜻 떠오르지 않는 개념이 있을 때 참고해주세요. 총 4편으로 준비했습니다.
Read More[골든래빗] 창립 3주년 기념 나눔 이벤트
LIVE 3주년 감사 이벤트 골든래빗 도서를 SNS에 공유하고 아아를 받아가세요. (참여하시면 무조건 받으시라고 300분에게 쏩니다)… Read More
[데이터 과학자 원칙] 데이터 분석 본질에 집중하는 4가지 초식
우리는 데이터 과학자, 데이터 분석가, 개발자로 어디서든 데이터와 마주합니다. 데이터 분석의 본질을 달성하는 초식 4가지를 소개합니다.
Read More